Goto

Collaborating Authors

 Baltimore County


From Guessing to Asking: An Approach to Resolving the Persona Knowledge Gap in LLMs during Multi-Turn Conversations

arXiv.org Artificial Intelligence

In multi-turn dialogues, large language models (LLM) face a critical challenge of ensuring coherence while adapting to user-specific information. This study introduces the persona knowledge gap, the discrepancy between a model's internal understanding and the knowledge required for coherent, personalized conversations. While prior research has recognized these gaps, computational methods for their identification and resolution remain underexplored. We propose Conversation Preference Elicitation and Recommendation (CPER), a novel framework that dynamically detects and resolves persona knowledge gaps using intrinsic uncertainty quantification and feedback-driven refinement. CPER consists of three key modules: a Contextual Understanding Module for preference extraction, a Dynamic Feedback Module for measuring uncertainty and refining persona alignment, and a Persona-Driven Response Generation module for adapting responses based on accumulated user context. We evaluate CPER on two real-world datasets: CCPE-M for preferential movie recommendations and ESConv for mental health support. Using A/B testing, human evaluators preferred CPER's responses 42% more often than baseline models in CCPE-M and 27% more often in ESConv. A qualitative human evaluation confirms that CPER's responses are preferred for maintaining contextual relevance and coherence, particularly in longer (12+ turn) conversations.


Matrix Factorization for Inferring Associations and Missing Links

arXiv.org Artificial Intelligence

Missing link prediction is a method for network analysis, with applications in recommender systems, biology, social sciences, cybersecurity, information retrieval, and Artificial Intelligence (AI) reasoning in Knowledge Graphs. Missing link prediction identifies unseen but potentially existing connections in a network by analyzing the observed patterns and relationships. In proliferation detection, this supports efforts to identify and characterize attempts by state and non-state actors to acquire nuclear weapons or associated technology - a notoriously challenging but vital mission for global security. Dimensionality reduction techniques like Non-Negative Matrix Factorization (NMF) and Logistic Matrix Factorization (LMF) are effective but require selection of the matrix rank parameter, that is, of the number of hidden features, k, to avoid over/under-fitting. We introduce novel Weighted (WNMFk), Boolean (BNMFk), and Recommender (RNMFk) matrix factorization methods, along with ensemble variants incorporating logistic factorization, for link prediction. Our methods integrate automatic model determination for rank estimation by evaluating stability and accuracy using a modified bootstrap methodology and uncertainty quantification (UQ), assessing prediction reliability under random perturbations. We incorporate Otsu threshold selection and k-means clustering for Boolean matrix factorization, comparing them to coordinate descent-based Boolean thresholding. Our experiments highlight the impact of rank k selection, evaluate model performance under varying test-set sizes, and demonstrate the benefits of UQ for reliable predictions using abstention. We validate our methods on three synthetic datasets (Boolean and uniformly distributed) and benchmark them against LMF and symmetric LMF (symLMF) on five real-world protein-protein interaction networks, showcasing an improved prediction performance.


DeBUGCN -- Detecting Backdoors in CNNs Using Graph Convolutional Networks

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) are becoming commonplace in critical applications, making their susceptibility to backdoor (trojan) attacks a significant problem. In this paper, we introduce a novel backdoor attack detection pipeline, detecting attacked models using graph convolution networks (DeBUGCN). To the best of our knowledge, ours is the first use of GCNs for trojan detection. We use the static weights of a DNN to create a graph structure of its layers. A GCN is then used as a binary classifier on these graphs, yielding a trojan or clean determination for the DNN. To demonstrate the efficacy of our pipeline, we train hundreds of clean and trojaned CNN models on the MNIST handwritten digits and CIFAR-10 image datasets, and show the DNN classification results using DeBUGCN. For a true In-the-Wild use case, our pipeline is evaluated on the TrojAI dataset which consists of various CNN architectures, thus showing the robustness and model-agnostic behaviour of DeBUGCN. Furthermore, on comparing our results on several datasets with state-of-the-art trojan detection algorithms, DeBUGCN is faster and more accurate.


Advancing climate model interpretability: Feature attribution for Arctic melt anomalies

arXiv.org Artificial Intelligence

The focus of our work is improving the interpretability of anomalies in climate models and advancing our understanding of Arctic melt dynamics. The Arctic and Antarctic ice sheets are experiencing rapid surface melting and increased freshwater runoff, contributing significantly to global sea level rise. Understanding the mechanisms driving snowmelt in these regions is crucial. ERA5, a widely used reanalysis dataset in polar climate studies, offers extensive climate variables and global data assimilation. However, its snowmelt model employs an energy imbalance approach that may oversimplify the complexity of surface melt. In contrast, the Glacier Energy and Mass Balance (GEMB) model incorporates additional physical processes, such as snow accumulation, firn densification, and meltwater percolation/refreezing, providing a more detailed representation of surface melt dynamics. In this research, we focus on analyzing surface snowmelt dynamics of the Greenland Ice Sheet using feature attribution for anomalous melt events in ERA5 and GEMB models. We present a novel unsupervised attribution method leveraging counterfactual explanation method to analyze detected anomalies in ERA5 and GEMB. Our anomaly detection results are validated using MEaSUREs ground-truth data, and the attributions are evaluated against established feature ranking methods, including XGBoost, Shapley values, and Random Forest. Our attribution framework identifies the physics behind each model and the climate features driving melt anomalies. These findings demonstrate the utility of our attribution method in enhancing the interpretability of anomalies in climate models and advancing our understanding of Arctic melt dynamics.


Neurosymbolic AI for Travel Demand Prediction: Integrating Decision Tree Rules into Neural Networks

arXiv.org Artificial Intelligence

Travel demand prediction is crucial for optimizing transportation planning, resource allocation, and infrastructure development, ensuring efficient mobility and economic sustainability. This study introduces a Neurosymbolic Artificial Intelligence (Neurosymbolic AI) framework that integrates decision tree (DT)-based symbolic rules with neural networks (NNs) to predict travel demand, leveraging the interpretability of symbolic reasoning and the predictive power of neural learning. The framework utilizes data from diverse sources, including geospatial, economic, and mobility datasets, to build a comprehensive feature set. DTs are employed to extract interpretable if-then rules that capture key patterns, which are then incorporated as additional features into a NN to enhance its predictive capabilities. Experimental results show that the combined dataset, enriched with symbolic rules, consistently outperforms standalone datasets across multiple evaluation metrics, including Mean Absolute Error (MAE), \(R^2\), and Common Part of Commuters (CPC). Rules selected at finer variance thresholds (e.g., 0.0001) demonstrate superior effectiveness in capturing nuanced relationships, reducing prediction errors, and aligning with observed commuter patterns. By merging symbolic and neural learning paradigms, this Neurosymbolic approach achieves both interpretability and accuracy.


A Discrete Variational Recurrent Topic Model without the Reparametrization Trick

Neural Information Processing Systems

We show how to learn a neural topic model with discrete random variables--one that explicitly models each word's assigned topic--using neural variational inference that does not rely on stochastic backpropagation to handle the discrete variables. The model we utilize combines the expressive power of neural methods for representing sequences of text with the topic model's ability to capture global, thematic coherence. Using neural variational inference, we show improved perplexity and document understanding across multiple corpora. We examine the effect of prior parameters both on the model and variational parameters, and demonstrate how our approach can compete and surpass a popular topic model implementation on an automatic measure of topic quality.


Topology-Driven Attribute Recovery for Attribute Missing Graph Learning in Social Internet of Things

arXiv.org Artificial Intelligence

With the advancement of information technology, the Social Internet of Things (SIoT) has fostered the integration of physical devices and social networks, deepening the study of complex interaction patterns. Text Attribute Graphs (TAGs) capture both topological structures and semantic attributes, enhancing the analysis of complex interactions within the SIoT. However, existing graph learning methods are typically designed for complete attributed graphs, and the common issue of missing attributes in Attribute Missing Graphs (AMGs) increases the difficulty of analysis tasks. To address this, we propose the Topology-Driven Attribute Recovery (TDAR) framework, which leverages topological data for AMG learning. TDAR introduces an improved pre-filling method for initial attribute recovery using native graph topology. Additionally, it dynamically adjusts propagation weights and incorporates homogeneity strategies within the embedding space to suit AMGs' unique topological structures, effectively reducing noise during information propagation. Extensive experiments on public datasets demonstrate that TDAR significantly outperforms state-of-the-art methods in attribute reconstruction and downstream tasks, offering a robust solution to the challenges posed by AMGs. The code is available at https://github.com/limengran98/TDAR.


ANSR-DT: An Adaptive Neuro-Symbolic Learning and Reasoning Framework for Digital Twins

arXiv.org Artificial Intelligence

In this paper, we propose an Adaptive Neuro-Symbolic Learning Framework for digital twin technology called ``ANSR-DT." Our approach combines pattern recognition algorithms with reinforcement learning and symbolic reasoning to enable real-time learning and adaptive intelligence. This integration enhances the understanding of the environment and promotes continuous learning, leading to better and more effective decision-making in real-time for applications that require human-machine collaboration. We evaluated the \textit{ANSR-DT} framework for its ability to learn and adapt to dynamic patterns, observing significant improvements in decision accuracy, reliability, and interpretability when compared to existing state-of-the-art methods. However, challenges still exist in extracting and integrating symbolic rules in complex environments, which limits the full potential of our framework in heterogeneous settings. Moreover, our ongoing research aims to address this issue in the future by ensuring seamless integration of neural models at large. In addition, our open-source implementation promotes reproducibility and encourages future research to build on our foundational work.


EmoXpt: Analyzing Emotional Variances in Human Comments and LLM-Generated Responses

arXiv.org Artificial Intelligence

The widespread adoption of generative AI has generated diverse opinions, with individuals expressing both support and criticism of its applications. This study investigates the emotional dynamics surrounding generative AI by analyzing human tweets referencing terms such as ChatGPT, OpenAI, Copilot, and LLMs. To further understand the emotional intelligence of ChatGPT, we examine its responses to selected tweets, highlighting differences in sentiment between human comments and LLM-generated responses. We introduce EmoXpt, a sentiment analysis framework designed to assess both human perspectives on generative AI and the sentiment embedded in ChatGPT's responses. Unlike prior studies that focus exclusively on human sentiment, EmoXpt uniquely evaluates the emotional expression of ChatGPT. Experimental results demonstrate that LLM-generated responses are notably more efficient, cohesive, and consistently positive than human responses.


Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning

arXiv.org Artificial Intelligence

With the growing computational capabilities of microcontroller units (MCUs), edge devices can now support machine learning models. However, deploying decentralised federated learning (DFL) on such devices presents key challenges, including intermittent connectivity, limited communication range, and dynamic network topologies. This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Stochastic Gradient Descent (GD PSGD), designed to address these issues in resource-constrained environments. The framework incorporates a hierarchical communication structure using Distributed Kmeans (DKmeans) clustering for geographic grouping and a gossip protocol for efficient model aggregation across two layers: intra-cluster and inter-cluster. We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline using the MCUNet model on the CIFAR-10 dataset under IID and Non-IID conditions. Results demonstrate that the proposed method achieves comparable accuracy to CFL on IID datasets, requiring only 1.8 additional rounds for convergence. On Non-IID datasets, the accuracy loss remains under 8\% for moderate data imbalance. These findings highlight the framework's potential to support scalable and privacy-preserving learning on edge devices with minimal performance trade-offs.